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The instability of a weakly sheared density-stratified two-dimensional wavy flow to
longitudinal vortices is considered. The instability mechanism is Craik–Leibovich type
2, or CL2, and the problem is posited in the context of Langmuir circulations beneath
irrotational wind-driven surface waves. Of interest is the influence to the instability
of Prandtl Pr and Richardson Ri numbers according to linear theory. The basis for
the study is an initial value problem posed by Leibovich & Paolucci (1981) in which
the liquid substrate is of semi-infinite extent and the wind-driven current is permitted
to grow in the presence of neutral waves. In the present work Pr is varied from
zero to infinity, and both stabilizing and destabilizing Ri are considered; so too are
monochromatic and measured wave fields, and laminar and turbulent velocity profiles.
Only the Ri = 0 results recover those of Leibovich & Paolucci. For stabilizing Ri,
it is found in general that diminishing Pr are destabilizing to Langmuir circulations
(LCs), and thus that LCs can be present or absent at the same Langmuir number
La provided Ri 6= 0. It is further found that two branches of neutral curves occur
for some combinations of Pr and Ri, and that minor changes in either parameter
permit the preferred spacing to switch from one branch to the other. In consequence
the preferred spanwise spacing may change from smaller than the wavelength of the
dominant waves to larger than it. Furthermore, although LCs will not form at inverse
La below a global lower bound given by an energy stability analysis, the actual value
of La at onset is found to depend greatly upon local details of the wave and shear
fields. Interestingly although this global lower bound is independent of Ri and Pr
for Ri > 0, that is not the case for Ri < 0, where it approaches zero as Ri → −∞,
indicating that the CL2 instability is viable even at low Reynolds numbers.

1. Introduction
This paper is concerned with the role Prandtl and Richardson numbers play in the

formation of organized convective motions known as Langmuir circulations, or LCs,
which form in the surface layer of oceans, lakes and ponds when winds of moderate
strength blow over them. LCs act at the surface to concentrate flotsam, seaweed, oil
and/or air bubbles into clearly visible streaks or bands known as windrows, with
spacings ranging from a few millimetres (Kenney 1993) to several hundred metres
(Plueddemann et al. 1996). This feature has captured the attention of mariners and
scientists for eons, but it was Langmuir (1938) who realized that windrows are visible
manifestations of a parallel series of counter-rotating vortices in the surface layer of
the water beneath that more or less align with the wind.

Langmuir’s observations further led him to believe that the vortices are largely
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responsible for the formation of thermoclines and the maintenance of mixed layers
in lakes and oceans. This notion is compelling, in part because of the importance of
the mixed layer and the heat, mass and momentum transport processes therein (see
e.g. Li, Zahariev & Garrett 1995), but also because LCs are apparently orderly flow
structures that arise out of disorderly environments. In consequence many attempts
have been made to explain them, but of the range of models suggested (see reviews by
Leibovich 1983 and Gargett 1989), the most plausible have as their basis a nonlinear
interaction between surface gravity waves and a weak current.

Of interest here is the prevailing theory in this category, that of Craik & Leibovich
(1976) (see also Craik 1970 and Leibovich & Ulrich 1972). These authors provide
a rational derivation of a set of equations – the CL-equations – thought to govern
LCs, given an irrotational wave field in which the wave slope is O(ε) and an O(ε2)
wind-driven rotational mean current. The CL-equations also follow from Andrews
& McIntyre’s (1978) exact theory of nonlinear waves on a Lagrangian-mean flow
(Leibovich 1980), in which the nonlinear interaction of the waves with themselves
is represented as a rectified O(ε2) effect through the Stokes drift. Interestingly, the
CL-equations predict that activity akin to Langmuir circulations may result from
either of two instability mechanisms, CL1 or CL2.

CL1 requires a surface wave field with a high degree of spatial structure while
CL2 acts without special spatial structure (Craik 1977; Leibovich 1977a). However
because spatial variations in the Stokes drift diminish owing to phase mixing as the
number of components in the wave spectrum increases (Craik & Leibovich 1976),
CL2 is thought the most relevant in the ocean context. In consequence CL2 has
formed the basis for numerous studies concerned with LCs and the effect on them
of stratification, nonlinearity and streamwise growth (e.g. Leibovich & Paolucci 1980,
1981; Leibovich, Lele & Moroz 1989; Cox et al. 1992; Cox & Leibovich 1993, 1997; Li
& Garrett 1993, 1997; Skyllingstad & Denbo 1995; McWilliams, Sullivan & Moeng
1997).

Further details of ocean LCs have also emerged from a vast observational program
(Thorpe & Hall 1982; Weller et al. 1985; Smith, Pinkel & Weller 1987; Weller &
Price 1988; Zendel & Farmer 1991; Smith 1992, 1998; Plueddemann et al. 1996 and
others). But comparison with CL-theory neither convincingly endorses nor convinc-
ingly refutes CL2. For example Smith (1992) details an occurrence in the Pacific ocean
in which LCs are absent in the presence of essentially steady waves and wind in a
breeze of 8 m s−1, but form within fifteen minutes of the wind freshening to 13 m s−1.
When first observed, the windrow spacing (i.e. spanwise wavelength of the LCs) was
about two thirds the wavelength of the dominant waves, but grew over the next
hour to about twice the dominant wavelength. What is striking about these findings,
vis à vis CL2, is that they indicate the absence and presence of LCs at essentially
the same Langmuir number La, the key parameter in CL-theory (La is defined in
§ 2). Furthermore the initial windrow spacings are a factor of five or so smaller than
predicted, at least at zero Richardson number. But Smith’s lament in comparing his
observations with CL2 is not the instability per se, but rather the absence of more
detailed parametric studies of the first bifurcation to LCs via CL2, specifically the
role of Prandtl number Pr, Richardson number Ri and the influence of growing
waves.

Our intent here is to focus upon the effects of Pr and Ri (the role of growing
waves is considered elsewhere, Phillips 2001b) and do so via an initial value problem
posed by Leibovich & Paolucci (1981, henceforth LP), outlined in § 2. In essence they
take the view that the instability works its way down from the surface, following the
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imposition there of a wave field and a wind stress; the layer may then be thought
of as infinitely deep and the shear within it to resemble a Rayleigh stress layer.
LP considered one value of Pr and three values of Ri, which we recalculate in
§ 3: interestingly, while we concur with their Ri = 0 results, we conclude that their
Ri > 0 results are flawed. We go on to consider a wide range of Pr at stabilizing
Ri in § 4 and destabilizing Ri in § 5. In doing so we find that diminishing Prandtl
numbers at non-zero Richardson numbers are destabilizing to LCs. We further find
that small changes to some combinations of Pr and Ri permit the preferred spacing
to jump from smaller than the wavelength of the dominant waves to larger than it, in
accord with Smith’s observations (§ 4.4). A feature also of interest is the influence on
onset of the input profiles of mean velocity and Stokes drift. We explore this in § 6
using Stokes drift profiles based upon Smith’s (1992) ocean measurements and mean
velocity profiles akin to those in a bounded turbulent boundary layer. We determine
that La at onset is strongly influenced by Ri, Pr and local details of the shear and
wave spectrum. Our results are discussed in § 7.

2. Governing equations
2.1. Background

We consider the formation of LCs beneath surface waves of characteristic slope ε� 1
in the presence of wind-driven shear in deep water, via an initial value problem posed
by LP. Here the water is initially at rest and its temperature varies as T (z). At time
t = 0 a wind stress and surface waves are imposed. The wind stress is represented
by the interface friction velocity u∗ in the wind direction and causes the velocity
in the water to grow, while the wave field is assumed to be neutral and to also
propagate in the wind direction, which we take to be the x-direction. Further, we
let the mean free surface coincide with the (x, y)-plane and set z positive vertically
upwards.

Key parameters are thus u∗, wave frequency σ, streamwise wavenumber α and
amplitude a, which together define a characteristic velocity scaleV and thus the level
of shear in the water through Vα/σ = O(εs) where s > 0 (see Phillips 1998). Of
course s ∈ [0, 2] at any instant in the open ocean (Melville, Shear & Veron 1998), but
the phase velocity of dominant waves is typically O(ε−2) larger thanV, so that s = 2,
and that is the case we consider.

The waves are then irrotational and interact with themselves (nonlinearly) to yield
a mean drift velocity, the Stokes drift, with one non-zero component ασa2D1 in the
direction of wave propagation. Furthermore, the ensuing O(ε)-wave O(ε2)-mean flow
interaction is described by the CL-equations (Craik & Leibovich 1976) and can be
unstable to LCs via the CL1 mechanism if D1 = D1(y, z), or CL2 if D1 = D1(z) (Craik
1977; Leibovich 1983). In the ocean context, however, where the waves comprise
a continuous spectrum of wavenumbers of random phase, it follows that Fourier
components in the spanwise y-direction phase mix to zero (Craik & Leibovich 1976),
so that CL2 (or more precisely CL2-O(ε2), Phillips, Wu & Lumley 1996) is relevant,
and that is the instability mechanism considered here.

The CL-equations may be non-dimensionalized in various ways but we follow
Leibovich (1977a). In particular we introduce spatial and temporal scales as[

(x, y, z)α−1,
t

aαu∗

(νT
σ

)1/2
]
, (2.1)



338 W. R. C. Phillips

with, becauseV = u2∗/ανT , corresponding mean and perturbation velocity components[
(U(z, t) + u(y, z, t))V, (v(y, z, t), w(y, z, t))u∗a

(
σ

νT

)1/2
]
. (2.2)

Accordingly the temperature perturbation is ϑT ′/α, where prime denotes d/dz and
νT is an eddy viscosity representative of turbulent diffusivity of momentum. Finally,
with streamwise-averaged (dimensionless) Eulerian velocity perturbations u = (u, v, w),
unit vectors (i, j , k) in (x, y, z) respectively and D ≡ ∂/∂z, the ensuing perturbation
equations relative to the substrate U(z, t) and linear thermocline T (z) are (LP)

∂u

∂t
+ u · ∇u = D1∇u− wDUi + Riϑk − ∇p+ La∇2u (2.3a)

and
∂ϑ

∂t
+ u · ∇ϑ = −w + LaPr−1∇2ϑ with ∇ · u = 0. (2.3b)

Here La is the Langmuir number

La =
ανT

au∗

(νT
σ

)1/2

, (2.4)

Pr is a turbulent Prandtl-number (where κT is the eddy diffusivity of heat)

Pr =
νT

κT

and Ri is a Richardson number

Ri =
N2

(au∗α)2(σ/νT )
,

where N2 = βgT ′(z) is the Brunt–Väisälä frequency with β the thermal coefficient of
expansion and g gravity. Also useful is the gradient Richardson number Ri∗, based
upon N2 and the geometric mean of U ′ and D′1 (Smith 1992); Ri∗ and Ri are, of
course, related (see § 3.1).

The initial value problem is completed with the boundary conditions

k · u = D(u× k) = ϑ = 0 on z = 0, (2.5a)

u→ 0, ϑ→ 0 as z → −∞, (2.5b)

the initial values

u(x, 0) = u0(x), ϑ(x, 0) = 0, (2.5c)

and the requirement that u0(x) is solenoidal.

2.2. Numerical formulation

Our intent is to proceed numerically, but prior to doing so it is prudent to rewrite
(2.3). In particular we seek a form that assumes the LCs are spanwise periodic
with wavenumber l and, because the substrate is a boundary layer, ensures that the
perturbations approach a constant value exponentially fast as z → −∞ (see below).
In consequence we write

(u, p, ϑ) = [û(z, t), p̂(z, t), ϑ̂(z, t)]Re{eγz+ily} (2.6)

where γ > 0 is a constant. Finally we map from the semi-infinite plane to the finite
plane with the transformation ζ = ez , rendering D ≡ ζ∂/∂ζ.
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On cross-differentiating to eliminate p̂, we then have

∂û

∂t
= −ŵDU + La(M− l2)û, (2.7a)

(M− l2)∂ŵ
∂t

= l2ûDD1 + La(M− l2)2ŵ − l2Riϑ̂ (2.7b)

and

∂ϑ̂

∂t
= −ŵ + LaPr−1(M− l2)ϑ̂ (2.7c)

in accord with LP, but with the general operator

M ≡ ζ ∂
∂ζ

(
ζ
∂

∂ζ

)
+ 2γζ

∂

∂ζ
+ γ2

and boundary conditions

∂û

∂ζ
+ γû = ŵ =

∂2ŵ

∂ζ2
+ (1 + 2γ)

∂ŵ

∂ζ
+ γ2 = ϑ̂ = 0 on ζ = 1, (2.8a)

and

û = ŵ = ϑ̂ = 0 with all derivatives bounded on ζ = 0. (2.8b)

Equations (2.7) with (2.8) and γ = 0 were solved numerically by LP using Galerkin

techniques which they outline in detail. Briefly the dependent variables û, ŵ and ϑ̂
are each expanded in linearly independent, complete sets of basis functions truncated
after N terms. The time-dependent coefficients multiplying the basis functions at
each order, a(t) say, are unknown. Substitution into (2.7) and evaluation of the inner
products then leads to a system of 3N linear, homogeneous algebraic equations of
the form

da

dt
= A(t)a (2.9)

where the elements of the matrix A(t) are known from the inner products.
Since the numerical technique carries over to the γ 6= 0 case we follow suit but with

various numerical improvements: First, in order to satisfy the physical requirement
in unbounded laminar (see Brown & Stewartson 1965; Phillips 1996) and turbulent
flows (Phillips & Ratnanather 1990) that the velocity field approach a constant value
exponentially fast as z → −∞, we set γ = 1. Failure to satisfy this requirement
can cause convergence problems owing to spurious singular behaviour arising from
truncation of the basis functions at finite N (Spalart, Moser & Rogers 1991). Fur-
thermore, requiring γ = 1 has the advantage of rendering the results insensitive to the
choice of boundary conditions at large z, because (2.6) demands both u and ∂u/∂z
be homogeneous as z →∞. Second, rather than use ad hoc polynomials for the basis
functions as LP did, we employ Chebyshev polynomials, whose properties can be
exploited by Gaussian quadrature, which we use for accurate, efficient integration of
the inner products. Finally the eigenvalue problem (2.9) was solved using LaPak with
N = 25.

Of course (2.6) may be recast to describe other linear stability problems, albeit with
different operators and boundary conditions, and these provided useful test cases to
validate our computer code. Examples employed included the Dean problem, which
utilizes (2.7a) and (2.7b) (see Drazin & Reid 1981), and the thermohaline Rayleigh–
Jeffreys problem (Baines & Gill 1969; Leibovich et al. 1989) which incorporates all



340 W. R. C. Phillips

1

0

–1

–2

–3

–4

–5
0.1 1

La–1
G

Ri
1

6.7
10

Pr =100

Figure 1. Curves showing Richardson number against the optimal global stability limit La−1
G for

various Prandtl numbers in the t → ∞ limit. Note that La−1
G is independent of Ri and Pr for

stabilizing, i.e. positive Ri, indicated by vertical line. Symbol � denotes Leibovich & Paolucci’s
(1981) Ri = 0 result from table 1.

components of (2.7). In each instance we accurately recovered the published onset
values, and in the case of Leibovich et al., the whole of their figure 1.

3. Leibovich & Paolucci revisited
3.1. Base flow

For the purpose of comparison we begin by revisiting the problem investigated by
LP. Here the developing substrate velocity U(z, t) is given by a solution to the stress
Rayleigh problem as

U = 2

(
tLa

π

)1/2

[exp(−η2)− π1/2η erfc(η)], (3.1a)

where

η = − z

2(tLa)1/2

so that

DU = erfc(η). (3.1b)

Accordingly the Stokes drift for monochromatic irrotational neutral waves is taken
to be

D1 = 2e2z (−∞ < z 6 0), (3.2)

from which it follows that Ri = 4Ri∗.
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Ri La−1
G lG σ1 σ2 La−1

c lc Vc La−1
G |LP lG|LP La−1

c |LP lc|LP
0 1.4395 0.3331 0.2631 1.000 1.5157 0.3187 0 1.46 0.32 1.52 0.32
0.1 2.6896 0.3469 ±0.0416
0.1 3.7281 0.2415 0 1.58 0.31
0.25 5.6517 0.6767 ±0.0893
0.25 6.5868 0.2477 0 1.66 0.30

Table 1. Global and critical inverse Langmuir numbers La−1
G , La−1

c and critical wavenumbers lG, lc
of linear theory at various Richardson numbers with Pr = 6.7, compared with those of Leibovich
& Paolucci (1981). Note that dual values at Ri > 0 depict critical values on the upper and lower
branches of the neutral curve; solutions on the upper branch are convective while those on the
lower branch are stationary.

3.2. Global stability

LP confined attention to one Prandtl number, Pr = 6.7, and deduced regions of
stability for three Richardson numbers, Ri = 0, 0.1 and 0.25; they began their study
with an energy stability analysis. This sought to isolate a global lower bound for La−1

via a set of equations not dissimilar to the steady-state form of (2.7) but which, in
addition to Ri and Pr, depend parametrically on two further variables, σ1 and σ2. The
lower bound, La−1

G say, is found by first minimizing La−1 over all t > 0 and l > 0 and
then maximizing this minimum over all admissible values of σ1 and σ2. Specifically,
because Pr > 0, the analysis requires both σ1 and σ2Ri be non-negative for all Ri.
If a finite La−1

G exists, then global monotonic stability is assured if La−1 < La−1
G .

LP restricted attention to stabilizing or neutral Richardson numbers, i.e. Ri > 0 and
report (La−1

G , lG) = (1.46, 0.32) for Ri = 0 with other values for Ri > 0; but Leibovich
(1983) later noted that La−1

G is independent of Ri in stably stratified conditions.
Using the numerical techniques of § 2.2 to solve the energy stability equations (LP’s

equation (20) subject to (2.6)), we computed La−1
G for a wide range of Ri ? 0 and

Pr > 0 and traces of La−1
G in the range Ri ∈ [−5, 1] for various Prandtl numbers are

shown in figure 1. First, we concur with LP’s result that the least-stable wave–mean
interaction occurs in the t → ∞ limit (for all Ri) and further find that the optimal
global stability limit occurs at (La−1

G , lG) = (1.4395, 0.3331) for all non-negative Ri
at any Pr and for all negative Ri when Pr = 0. Of course on noting that thermal
effects enter the energy stability counterpart to (2.7b) through a term of the form

l2Ri(σ2− 1)ϑ̂, we see that this result is synonymous with σ2 = 1. For destabilizing (i.e.
negative) Ri, however, and Pr > 0, we find that σ2 = −1, thereby allowing La−1

G to
vary with Pr and Ri. Specifically, we find La−1

G diminishes with decreasing Ri, such
that La−1

G → 0 as Ri→ −∞. Furthermore the rate at which La−1
G diminishes increases

with Pr to the point where La−1
G = 0 for all Ri < 0 in the limit Pr →∞.

3.3. Instability to infinitesimal disturbances

Turning now to the solution of (2.7) and (2.8) we note that although our neutral
stability curves in the t → ∞ limit recover LP’s away from onset, they concur near
onset only at zero Richardson number, where we find (La−1

c , lc) = (1.5157, 0.3187)
compared with LP’s (1.52, 0.32). But, as we see in table 1, our results are vastly
different at non-zero Richardson numbers.

Since our numerics accurately reproduced the test cases cited in § 2.2, coding errors
seemed unlikely; so we chose to repeat the calculations with LP’s basis functions. Our
onset values were then within a few percent of LP’s. The difference between the two
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Figure 2. Stability diagram showing the optimized global stability estimate for Ri > 0 (vertical
line) and lower branch curves of neutral stability for Richardson numbers Ri = 0,±0.1,±0.25 at
the Prandtl number Pr = 6.7. The trace connecting the nose of each curve is that of the critical
spacing as Ri increases; see also figures 7 and 8. Symbols denote the onset results of Leibovich &
Paolucci (1981): �, Ri = 0; ×, Ri = 0.1; +, Ri = 0.25.

calculations lay with the coefficient matrix A, which is well-conditioned near onset
with Chebyshev basis functions, but increasingly ill-conditioned as N and Ri increased
with LP’s functions. In fact we were able to find solutions with LP’s functions only
for N 6 10.

LP’s results for Ri 6= 0 must thus be discarded. Nevertheless, subcritical instability
in the gap La−1

G < La−1 < La−1
c |Ri>0 notwithstanding, LP’s conclusion that the t→∞

neutral curve for Ri = 0 is the least stable of their three cases is correct.
Neutral curves for the Ri studied by LP are summarized in table 1. Note that dual

values are given for Ri > 0: these represent critical values on two branches of the
neutral curve, a lower branch which depicts stationary solutions and an upper branch
that depicts convective solutions (see also § 4.3), the latter with velocity u∗a(σ/νT )1/2Vc.
Note also that the convective solutions have two interpretations: the first is that the
LCs stand in space and alternate in sign; the second is that a +Vc or −Vc alone each
gives rise to spanwise propagating rolls with equal and opposite phase speed.

The lower branch curves are plotted in figure 2. Neutral curves for two negative
values of Ri are also plotted in figure 2; these have critical values less than La−1

c |Ri=0, in
accord with figure 1, but greater than the global values at their respective Richardson
numbers.

Our intent now is to explore LP’s problem over a wide range of Pr and Ri,
considering first stabilizing (§ 4) and then destabilizing (§ 5) Richardson numbers. We
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then repeat some calculations (in § 6) using empirical profiles for DU and DD1, in
each instance viewing the results in the light of Smith’s (1992) observations in the
ocean.

4. The role of Prandtl number with stabilizing Richardson numbers
Although Prandtl number is thought to vary from unity to about ten in the ocean,

we vary it from zero to infinity. This allows us to deduce three asymptotes for neutral
stability formally, to which our numerics must conform. We begin (§ 4.1) by deducing
these asymptotes and then discuss intermediary conditions (§ 4.2); finally (§ 4.3) we
look at growth rates at various wavenumbers

4.1. Limiting cases

Consider then the inverse Langmuir number at the onset of instability and how it
varies with Richardson number in various limiting situations for Pr. First, we can
determine formally (from (2.8) and the steady form of (2.7)) that onset at Pr = 0 (in
the context of κT → ∞, νT 6= 0) is independent of Ri and occurs at some La−1

c 6= 0,
which must necessarily be the onset value calculated in § 3.3 at Ri = 0. Second, by
similar means we find that La−1

c becomes independent of Pr as Ri → 0. Thus from
table 1 we have that La−1

c |Pr=0 = La−1
c |Ri=0 = 1.5157 = La−1

c0 , say, which then defines
the Pr = 0 limit to which all Pr > 0 critical curves must asymptote as Ri → 0, as
we shall see in figure 3(b). It further follows that LP’s least stable neutral curve (see
§ 3.3) is actually the curve defined by the double limit Ri, P r → 0 and in view of its
importance we use it as a reference.

Next, onset in the Pr → ∞ limit (in the context of κT → 0, νT 6= 0), can be
interpreted to be either independent of Ri and/or to have the same solution as
Ri = 0. Thus its asymptote must depict one branch along the Ri = 0 axis over some
La−1 > 0 and, in view of our findings in §3.2, a second branch along the La−1 = 0
axis for all Ri < 0. The possibility also exists for a third branch for Ri > 0 at La−1

c0

(see § 4.3).
Finally, the Miles–Howard theorem (see Drazin & Howard 1966; Leibovich 1983)

decrees that inviscid stability is to be expected for Pr 6= 0 and Ri > 4 as La−1 → ∞,
thereby yielding a third asymptote at Ri = 4.

Our numerical solutions concur well with these limiting cases, as we shall see
in figure 3, although huge inverse Langmuir numbers were necessary to satisfy the
inviscid criterion. Curious also is the occurrence of instability at some La−1 for Ri > 4.
In our discussion to follow in § 4.2, therefore, we look first at results for 0 6 Ri < 4
and then those for Ri > 4.

4.2. Intermediate cases

We begin by viewing figure 3 where we plot Ri against La−1
c . Observe that La−1

c is
single valued in Ri for 0 6 Ri < 4 at each Pr (= constant > 0) and thus that the
flow is unstable to CL2 for all La−1 > La−1

c > La
−1
c0 . But of particular interest is how

changes in Pr affect instability: interestingly, we see that because La−1
c at constant Ri

decreases with decreased Pr, then any decrease in Pr is destabilizing, irrespective of
whether Ri and/or La change (increase or decrease), provided La−1 > La−1

c > La−1
c0

at the final Pr and Ri.
In the ocean context, therefore, where an increase in the turbulence level alters Pr

from say its molecular value of 6.7 to nearer unity, we may infer that an increased
turbulence level can destabilize a wavy shear flow devoid of LCs to LCs, via the CL2
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Figure 3. Plots of (stabilizing) Richardson number against critical Langmuir number at various
Prandtl numbers. Included in (a) and (b) is the asymptote for Pr = 0 at La−1

c0 = 1.5157 and in the
expanded view (b), the asymptote for global instability, La−1

G = 1.4402.

mechanism at constant La. This finding resonates with Smith’s (1992) observation
that, at essentially constant La, freshening winds (and consequent increased turbulence
level) lead to the formation of LCs (see also §§ 4.3, 4.4) in wind wave conditions
theretofor devoid of LCs. Interestingly the changeover occurs in a fifteen minute time
frame, which is sufficient time for the intensification of turbulence to depths of circa
5 m (assuming a midrange value of νT = 0.025 m2 s−1 from Huang’s (1979) list of
ocean eddy viscosities). Of course other factors not envisaged here such as internal
waves may also play a role, but the simplicity of the above explanation is compelling.

For Ri > 4 on the other hand, La−1
c is multivalued in Ri for constant Pr, but

the above conclusion holds, albeit with the caveat that La−1
c ∈ [La−1

clow
, La−1

chigh
] at the

final Pr and Ri. Of course the fact that instability can occur at all for Ri > 4 is
somewhat unexpected. Indeed, because CL2 is an inviscid instability and inviscidly
stable for Ri > 4, Leibovich (1980) reasoned it should be stable for all La, but in fact
the presence of viscosity is mildly destabilizing. ‘Mildly’ because growth rates for the
instability at Ri = 4 are from one to four orders of magnitude below their maximal
and continue to diminish with increased Ri > 4; but they are, nevertheless, positive,
as we see in figure 4. This figure, which is typical, is a trace of the maximum growth
rate at a constant Langmuir number of La−1 = 105 (at which l = 0.124). For ease of
comparison, each curve has been normalized to unity at Ri = 0, at which point Pr
plays no role (see § 4.1); and in fact continues to play no role for Ri < 2, as we see in
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figure 4. Of course even though the flow is linearly unstable for Ri > 4 this does not
guarantee it will be nonlinearly unstable for Ri > 4.

4.3. Neutral stability

We return now to curves of neutral stability, previously introduced in § 3.3. Here,
however, our intent is to explore such curves in detail beginning with the limit
cases plotted in figure 5. Included therein is the reference double limit Pr, Ri → 0
solution (LP’s least stable curve) from figure 2, which acts as an envelope, and curves
representative of the limit Pr → ∞ at Ri > 0. In fact for this second limit we plot
neutral curves for Pr = 100 and Ri = 1, and depict not one but two curves specified
by the smallest and next smallest onset La−1.

Multiple eigensolutions depicting neutral stability are not of course uncommon in
calculations of this type, the curve of smallest La−1

c usually being of interest. But
notable here is that the curves depict upper and lower branch eigensolutions, the
lower depicting stationary solutions, the upper convective solutions. In the instance
plotted the lower branch is nested within the upper; but that is not always the case
for, as Pr decreases from infinity, there is a point at which the two branches overlap.
Of course in such situations the least stable curve may or may not enclose the nose of
the next stable, but whatever the case the onset values of the two curves are usually
well separated (see e.g. Phillips 1993, figure 1).

Here, however, the upper and lower branches not only overlap, but there is a
Prandtl number, Pr = PrE ≈ 8.472, at which the onset values of the upper and lower
branch curves are equal, at La−1

c = La−1
cE ≈ 24.85. This case is also plotted in figure 5.
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Pr = 100, Ri = 1 curve. Noses on the lower branch are connected by the trace of onset spacing.
The upper curve is the curve of maximum growth rate for the double limit Ri, P r → 0. Finally the
tick at La−1 = 50 denotes the location of the growth rate curves drawn in figure 6.

Indeed, as Pr decreases from infinity with Ri = 1, we see from figure 5 that La−1
c

increases from its value at Pr → ∞ to La−1
cE on the upper branch and then decreases

from La−1
cE to La−1

c0 on the lower branch. In the process the critical wavenumber lc
at the crossover jumps from about 2.0 to 0.2, so that we would expect the windrow
spacing of the LCs to increase from about half the wavelength of the dominant slope
waves to roughly five times that wavelength.

4.4. Growth rates

Alternatively, if we hold Ri and La−1 constant and plot the growth rate as a function
of spanwise wavenumber l for various Pr, we obtain curves typified in figure 6. Here
Ri = 1, La−1 = 50 and the growth rate is relative to the maximum value for the
double limit Pr, Ri→ 0 (at the same La−1). Again, as Pr decreases from infinity, the
point of maximum growth rate moves from the upper branch to the lower, with a
crossover (in this instance) at Pr ≈ 5.3.

Holding Ri and Pr constant now (with Pr = 5.3) and looking at the ensuing neutral
curves, we find that La−1

c is smaller on the lower branch but that the growth rate is
higher on that branch only until La−1 = 50. In consequence, as Pr or La−1 decrease
through Pr = 5.3, La−1 = 50, the windrow spacing increases from about one third
the wavelength of the dominant slope waves, to three quarters of that wavelength.
Of course this does not mean an abrupt change in spacing occurs at the crossover,
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for LCs with both spacings will still form; what it means is that LCs with the larger
spacing will persist.

Of course an obvious question at this point is whether the changeover from
convective to stationary branches is noticeable in a field experiment? In order to
answer this we turn to the windrows described by the LCs and the temporal patterns
they depict. While all windrows are basically parallel, LCs which stand in space and
alternate in sign (convective see § 3.3) act to form new windrows between the old
ones every time they alternate in sign, with dimensionless period 2π/(lVc). Convective
solutions can also cause a gradual spanwise drift of the windrow field (note that the
propagation velocity is less than 10% of the peak transverse velocities in the LCs).
Windrows described by stationary LCs on the other hand remain fixed over their
lifetime.

In summary, therefore, onset occurs on the upper branch for one range of Pr and
Ri and on the lower branch for another range of Pr and Ri. But although crossover
is possible at least for Ri ∈ (0.03, 1.33) and Pr ∈ (4.7, 11.5), it does not occur for all
unstable Pr and Ri.

4.5. Spanwise wavenumber and curves of maximum growth rate

We turn now to the spanwise wavenumber and begin with its value at onset, as shown
in figure 7. Here we plot lc as a function of Ri for the lower branch neutral curve.
Observe that lc is a maximum at Ri = Pr = 0, which is drawn as an asymptote and
that the curves for Pr > 0, which peal from that asymptote, take essentially the same
form. Indeed, if we plot the same results against La−1

c , we find they collapse, as we
see in figure 8. In short, the curve of lc against La−1

c is independent of Pr.
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We do not include the upper branch counterpart of lc in figures 7 and 8, in part
because it extends over only a limited range of Ri and Pr as we discovered in § 4.4,
but principally because the ensuing curves are very close, curiously, to the curve of
maximum growth rate for the double limit Pr, Ri→ 0, as evident in figure 5.

In fact the curve of maximum growth rate for the double limit reference would
appear to be something of an asymptote in itself because, different growth rates
notwithstanding, the curves of maximum growth rate for both upper and lower
branch solutions are asymptotic to it, as we see in figure 9. Note too that, because
the dominant spacing is probably specified by the curve of maximum growth rate, we
find for fixed Pr and Ri, that the spacing will increase only with diminishing La−1.

5. The role of Prandtl number with destabilizing Richardson number
Although the thermocline in the ocean surface layer is usually neutral or stabilizing,

there are occasions when it is destabilizing and we should like now to consider this
case. Interestingly, as we found in § 3.2, such conditions no longer limit CL2 to the
global lower bound La−1

G |Ri>0 = 1.4395 but permit lower values dependent upon Ri
and Pr, as we saw in figure 1.

These same features are also reflected in the critical values depicted in figure 10. In
accord with our earlier results, we find that La−1

c > La−1
G at any combination of Ri

and Pr, although here La−1
c seldom exceeds La−1

G by more than one percent and for
that reason only La−1

c is shown in 10.
Observe too that La−1

c → 0 for sufficiently large negative Ri, indicating that CL2
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Figure 8. Curves of spanwise spacing at onset for various Prandtl and Richardson numbers as
shown in figure 7 but plotted as a function of critical Langmuir number.

continues to operate in highly viscous, even creeping flow, situations, provided wave–
wave nonlinearities can occur and the wave field is irrotational. Of course rotational
waves, which are more the norm in such flows may also excite CL2, but to prove so
the calculation must be redone. Specifically (2.3) must be replaced by its rotational
counterpart ((4.1) in Phillips 1998) and the Stokes drift must be replaced by the more
general wave–wave measure, the pseudomomentum (see Andrews & McIntyre 1978;
Phillips 2001a). Of course this combination of La−1

c and Ri will doubtless not arise
in the ocean, but it may well occur in other contexts.

Neutral stability curves for Ri < 0 are drawn in figures 2 and 11. Observe that their
generic form is as before but that they now lie to the left or destabilizing side of the
reference double limit curve.

6. Results with other primary profiles
While generic profiles for the mean velocity and Stokes drift are useful tools in the

study of their instability to LCs, questions always remain regarding the sensitivity of
such results to the input primary profiles. Our intent now is to gain insight into this
question by employing primary profiles based upon empirical data. Of course like
(3.1a) or its more general counterparts (Phillips 1996), the velocity field in the ocean
is a function of time (see e.g. Plueddemann & Weller 1999). However while the notion
of a limiting form as t→∞ is clear for the theoretical profiles (3.1a), the same cannot
be said for field experiments (see also § 7). Rather we must accept the data as typical
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of a mature flow; we must also assume the profile is characteristic of mean events in
the absence of LCs.

6.1. The mean velocity

Direct measurements of the local mean velocity profile in the ocean surface layer
were made as part of the Surface Wave Processes Program (SWAPP) (see e.g. Weller
& Plueddemann 1996; Plueddemann et al. 1996; Plueddemann & Weller 1999). Of
course the profiles are typically three-dimensional so that it is not always clear whether
they are in the presence or absence of LCs. Nevertheless, some of Plueddemann &
Weller’s (1999) data (view their figure 11 with a virtual origin for z) indicate that
below one wave amplitude or so the mean shear scales with the law of the wall (for
bounded turbulent flows). This finding concurs with the observations of Jones (1985),
Richman, deSzocke & Davis (1987) and Lentz (1992). But although law of the wall
scaling carries over to the streamwise component of a three-dimensional bounded
mean flow (Phillips & Khoo 1987), such scaling is relevant in only some instances
in the ocean surface layer, a point Plueddemann & Weller make admirably clear.
Nonetheless, a mean velocity field based on such scaling is an appropriate test case
and Smith (1992) suggests it be employed.

Here DU is constant at the surface and proportional to z−1 some distance from it, in
what is known as the logarithmic region. Of course the velocity profile cannot depict
logarithmic behaviour indefinitely; there must be an the outer region in which DU
approaches zero exponentially fast (Brown & Stewartson 1969). Phillips (1987, 1994)
and Phillips & Ratnanather (1990) give expressions that capture such asymptotics
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and we employ them here, subject to the assumption that they depict the limiting
form of the least stable primary mean velocity profile. Then

DU =
1

2

(
1 + exp−(κλ/16)3

(1 + 1
8
(κλ)3)1/3

)
for 0 6 −z < −z0, (6.1a)

=
exp−(z/z0 − 1)2

κλ
for − z0 6 −z < ∞. (6.1b)

But to proceed with (6.1) we must relate the independent variable in the vertical
direction λ, which is in viscous units, to z. This can of course can be done formally,
but the ensuing expression requires knowledge of νT/ν, a ratio we prefer to avoid.
Instead we employ Jones’ finding that DU ∝ z−1 for −z > αa and thus associate
z = −αa with the edge of the buffer region in a bounded layer, at which point λ ≈ 30.
Then because αa ≈ κ (see Lighthill 1978, p. 454), we have κλ ≈ −30z ≈ −A1/2z.

Of course whether the outer region of the ocean boundary layer has the same
structure as its bounded counterpart is decidedly unclear and to our mind unlikely.
Nevertheless it is physically necessary that (6.1b) apply as z → −∞ and so we require
it from some point z0, which we arbitrarily set to z0 = −2. The ensuing profile for
DU is plotted in figure 12.

6.2. The Stokes drift

Being a Lagrangian measure, the Stokes drift cannot be measured directly by instru-
ments fixed in an Eulerian frame. Nevertheless D1 can be deduced from measurements
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made by fixed instruments in such a frame, either from knowledge of the spectral
density of the wave slope at the free surface (see Huang 1971) or from space–time
correlations of velocity fluctuations in the interior (Phillips 2000, 2001a). Here we use
the former approach and employ Smith’s (1992) empirical spectra prior to and after
the formation of LCs.

In fact Smith gives an expression for D1, but in deriving it he approximates the
spectral density (of wave slope) by two regions of the form Biσ

ni , with ni = [0, 0]. Our
reading is that the curve is better approximated by three regions in which ni = [0, 3, 0].
For irrotational surface waves in deep water we then find that

DD1 = C1

{
ξ−1 [B1(erf(S2ξ)− erf(S1ξ)) + B3(erf(Scξ)− erf(S3ξ))]

−C2B2ξ
−2
[
S2

3 exp−(S3ξ)2 − S2
2 exp−(S2ξ)2 + ξ−2(exp−(S3ξ)2 − exp−(S2ξ)2)

]}
,

(6.2)

which of course recovers Smith’s expression if S3 = S2. Here ξ = (−2z)1/2, C1 =
b(3π/2)1/2κ−2, C2 = (g/2πf0W )3/

√
π and Si = 2πWfi/g. Finally we note that

DD1 ∼ 2C1√
π

[B1(S2 − S1) + B3(Sc − S3)] as z → 0 (6.3)

from which we determine the constant b to ensure DD1(0) = 4, as is the case in §§ 3
and 4.

Smith’s data (his figure 13) suggest that fi = [0.088, 0.138, 0.26] Hz with Bi =
[0.3, 113.8, 2.0] × 10−3 prior to the formation of LCs (when the wind speed W =
8 m s−1) and fi = [0.088, 0.12, 0.26] Hz with Bi = [0.45, 256.0, 4.5]× 10−3 after LCs
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Figure 12. Gradients of mean velocity for accelerating laminar flow as t→∞ (see (3.1b)) and fully
developed turbulent flow (6.1).

form, when W = 13 m s−1. Finally for convenience we set the reference frequency
f0 = 1 Hz and, because the data end at f = 0.65 Hz, take that value as the cut-off
frequency fc.

Before and after traces of DD1 are plotted in figure 13 along with its monochromatic
counterpart. Observe that DD1 for the measured spectra diminishes more rapidly with
depth than 4e2z , at least for −z < 3.

6.3. Results

Our first task is to deduce the influence DU has on stability and thus calculate
neutral stability curves for both velocity gradients, i.e. (3.1b) and (6.1), in the presence
of the same Stokes drift gradient, that for monochromatic waves (3.2). As evident
in figure 14, relative to the mean laminar profile, the mean turbulent profile acts to
stabilize the interaction, altering onset from La−1

c = La−1
c0 to La−1

c = 8.912. This result
is perhaps not surprising because we earlier determined that the least stable scenario
occurs when the full extent of the LCs is subjected to uniform shear, which is the
case for (3.1a) when t→∞, but not the case for (6.1).

To determine the influence of Stokes drift then, we retain the least stable velocity
gradient and repeat the calculation. Here we find that a spectrum of waves, as opposed
to monochromatic waves, is also stabilizing, but that the degree to which they stabilize
is very much dependent upon details of the spectrum. Indeed we find onset occurs
at La−1

c = 2.97 for the spectrum prior to Smith’s observation of LCs and La−1
c = 7.2

after. Of course the same holds true if we employ the turbulent velocity profile, only
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seas before and after the formation of Langmuir cells.

now onset is delayed until La−1
c = 16.88 (before) and La−1

c = 38.72 (after), as we see
in figure 14. In conclusion, therefore, although La−1

c = La−1
c0 may well be the critical

value for instability to LCs in all situations for which Ri > 0, the actual onset La−1

is non-unique and strongly dependent upon Ri, Pr and details of the shear and wave
spectrum that apply locally.

Finally, rather than enforcing the boundary condition DD1(0) = 4, we allow DD1(0)
to take its measured value by setting b = 1 in (6.2); physically this adjusts the intensity
level of the Stokes drift to that present in the ocean. Then with the mean shear (6.1),
onset values range from La−1

c = 131 with Ri = 0, to La−1
c = 6292 with Ri = 0.1 and

Pr = 6.7. These values vastly exceed those above, but they are precisely in the range
La−1 = 102–103 which Leibovich (1977b) argues are of interest in the ocean.

7. Discussion
Two questions come to mind regarding CL2: the first is physical and asks whether

CL2 is the mechanism primarily responsible for LCs in the ocean; the second is
pragmatic and asks, irrespective of question one, whether CL2 can credibly depict the
more important features of the lifecycle of LCs, as required in the next generation of
Global change models. The present work cannot answer the first question but it does
shed light on the second.

In particular we now have an explanation for two of Smith’s observations: his first
was the absence and presence of LCs at essentially the same Langmuir number. This
(see § 4.2) can be explained by diminishing values of Pr, which occur owing to an
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Figure 14. Curves of neutral stability at Ri = 0 for various mean velocity and Stokes drift profiles.

increased level of turbulence brought on by freshening winds. In essence diminishing
values of Pr are destabilizing to LCs at constant La−1, provided Ri 6= 0.

Smith’s second observation concerned the spacing of the LCs, which increases
with time. When first observed these were less (11–16 m) than the 25 m dominant
wavelength of the waves but grew in time to well exceed that wavelength. Since the
resolution of Smiths data is limited to about 10 m, we do not know if LCs were present
prior to Smith being aware of them. But irrespective of when LCs first formed, we
need an explanation for windrow spacings less than the dominant wavelength of the
waves and that requires l > 1. If La−1 is constant and Pr decreasing as above, we can
achieve l > 1 via the present analysis only if the neutral curve has an upper branch,
because the lower branch requires l < 1. Fortuitously upper and lower branch neutral
curves do exist and, as we found in § 4.3, crossover from one to the other can occur
for some Pr and Ri, namely Pr ∈ (4.7, 11.5) and Ri ∈ (0.03, 1.33), so we can satisfy
l > 1. Furthermore as Pr falls, it must at some point exit the range 4.7–11.5, thereby
forcing crossover to the lower branch, from which point LCs with larger spacings
will dominate. Of course this scenario does not exclude dynamical effects which may
increase spacing via nonlinearities that occur once LCs have formed; nor does it
exclude a cascade in scales by which LCs form, as we shall now discuss.

A curious result of this analysis is the least stable scenario which, as LP determined,
occurs in the limit t → ∞. Physically (see (3.1b)) this means that the full extent of
the LCs are subjected to uniform shear and this raises an interesting question: if LCs
originate because of the dominant waves as the analysis in § 2.1 assumes, then it is
doubtful whether LCs ever arise in the least stable limit because the uniform region
of the shear layer is just not that deep. Alternatively if LCs do arise in the least
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stable limit, then the wavelength of the waves exciting them is much smaller than the
wavelength of the dominant waves, and rather than weak shear as the base flow, for
which s = 2 (see § 2.1), we have strong shear s = 0. Interestingly the latter is the case
in Melville et al.’s (1998) laboratory experiments, which highlight the rapid growth of
LCs, although whether CL2 is the instability mechanism that spawns them is unclear.
Of course CL2 does carry over to s = 0 shear (Craik 1982) but the character of the
instability is vastly different (Craik 1982; Phillips & Wu 1994; Phillips 1998) from
the s = 2 case studied here. Nevertheless, such findings in combination with Smith’s
observation (of no LCs in steady wind wave conditions followed by LCs of increasing
spacing in freshening conditions; see § 1) fuel the notion (Phillips, Wu & Jahnke 1999)
that ocean LCs originate in the strong shear (s = 0) regime and then grow in scale
as they cascade through medium (s = 1) to ultimately weak (s = 2) shear, only to be
sustained by the dominant waves.

This work was supported by the National Science Foundation through OCE grants
9696161 and 9818092.
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